Cancer in Agricultural Populations

Laura Beane Freeman, Ph.D.
Occupational and Environmental Epidemiology Branch
Division of Cancer Epidemiology and Genetics

Russian Occupational Health Conference
September 18, 2015
Background: Agriculture and Cancer

- Although farming is declining worldwide, it remains an important industry
- Farmers healthier than general population
 - Lower incidence:
 - Lung, bladder, colon
 - Higher incidence:
 - Leukemia, multiple myeloma, NHL
 - Lip
 - Stomach
 - Skin
 - Brain
 - Prostate cancers

Blair and Beane Freeman, J Agromedicine, 2009
Background: Agriculture and Cancer

- Numerous exposures
 - Pesticides
 - Animals
 - Diesel engine exhaust
 - Biologically active dusts
 - Zoonotic microbes
 - Fuels, oils, and solvents

- Low rates of tobacco and alcohol use
- High rates of physical activity
The Agricultural Health Study

- Designed to study a wide range of health effects of agricultural exposures in farmers and their families

- Prospective cohort of 52,000 licensed pesticide applicators and 32,000 farm spouses
 - 1993-97

- Completed questionnaires on medical history, pesticide use, and current farming

- 84% of licensed applicators enrolled
Agricultural Health Study

- Two agricultural states:
Agricultural Health Study

- Regular linkage to state cancer registries
 - Population-based
- National mortality registry
- 17+ years of follow-up (median age=65 years)
- >10,000 incident cancers
- Able to control statistically for use of other pesticides and other exposures
Pesticides: A Worldwide Exposure

- 2.4 billion kg pesticide active ingredients applied worldwide in 2007
- 500 million kg of pesticide active ingredients used in 1993 in the USA
 - 890 different active ingredients
- World-wide over 1 billion people occupationally exposed to pesticides
Pesticide Application Methods: Field Crops
Pesticide Application Methods: Animals
Pesticide Application Methods: Orchards
Pesticide Application Methods: Field Crops
Mixing pesticides
Selected Pesticide Findings: Farmers

Organophosphate Insecticides

Organochlorine Insecticides
Lindane, DDT

Chloroacetilinide Herbicides
Metolachlor
Acetochlor
Organophosphate Insecticides

- Introduced in the 1970s
- Widespread use on crops and animals, agricultural and residential use (historically)
- Acetylcholinesterase inhibition
Diazinon and NHL

Relative Risks and 95% CI

Alavanja...Beane Freeman, PLoS One 2014

Adjusted for age, state, race, herbicide use
Diazinon and Lung Cancer

Relative Risks and 95% CI

- Lung Cancer
- Adenocarcinoma
- Squamous cell carcinoma
- Small Cell carcinoma

Adjusted for age, state, alcohol, smoking, family history of cancer, education

Jones...Beane Freeman, Occup Environ Med, 2015
Organochlorine Insecticides

- Introduced in the 1940s
- Persistent
- Most banned in US in 1970s
 - Lindane still used until 2006
- Many still used in around the world for vector control
Lindane and NHL

Relative Risks and 95% CI Adjusted for age, state, race, herbicide use

Alavanja...Beane Freeman, PLoS One, 2014
DDT and NHL

Relative Risks and 95% CI

Adjusted for age, state, race, herbicide use

Alavanja...Beane Freeman, PLoS One, 2014
Recent IARC Evaluations of Pesticides

- These results played an important role in recent IARC monograph evaluations
 - Lindane—Group 1 (NHL)
 - DDT—Group 2A (NHL)
 - Diazinon—Group 2A (NHL and lung cancer)
Organophosphate Insecticides and Aggressive Prostate Cancer

<table>
<thead>
<tr>
<th>Organophosphate Insecticide</th>
<th>Q4 vs. Non-exposed RR 95 % CI</th>
<th>P-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>1.01 (0.80, 1.28)</td>
<td>0.84</td>
</tr>
<tr>
<td>Diazinon</td>
<td>1.31 (0.87, 1.96)</td>
<td>0.27</td>
</tr>
<tr>
<td>Fonofos</td>
<td>1.63 (1.22, 2.17)</td>
<td><0.001</td>
</tr>
<tr>
<td>Malathion</td>
<td>1.43 (1.08, 1.88)</td>
<td>0.04</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.98 (0.53, 1.79)</td>
<td>0.97</td>
</tr>
<tr>
<td>Phorate</td>
<td>1.36 (0.96, 1.93)</td>
<td>0.10</td>
</tr>
<tr>
<td>Terbufos</td>
<td>1.29 (1.02, 1.64)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

First study to show association with aggressive prostate cancer

Koutros, Beane Freeman et al., American Journal of Epidemiology, 2014
Association between pesticides and prostate cancer among men with risk allele identified in genome-wide association studies

<table>
<thead>
<tr>
<th>Gene/Region</th>
<th>Pesticide</th>
<th>Non-exposed</th>
<th>Low exposed OR (95% CI)</th>
<th>High exposed OR (95% CI)</th>
<th>P-int</th>
</tr>
</thead>
<tbody>
<tr>
<td>8q24, rs4242382</td>
<td>FONOFOS</td>
<td>REF</td>
<td>1.2 (0.7, 2.2)</td>
<td>2.9 (1.5, 5.9)</td>
<td>0.002</td>
</tr>
<tr>
<td>8q24, rs1447295</td>
<td>FONOFOS</td>
<td>REF</td>
<td>1.1 (0.6, 2.0)</td>
<td>2.8 (1.4, 5.6)</td>
<td>0.003</td>
</tr>
<tr>
<td>8q24, Region 3</td>
<td>TERBUFOS</td>
<td>REF</td>
<td>1.5 (0.9, 2.5)</td>
<td>1.8 (1.0, 2.8)</td>
<td>0.02</td>
</tr>
<tr>
<td>EHBP1</td>
<td>MALATHION</td>
<td>REF</td>
<td>2.2 (0.9, 5.1)</td>
<td>3.4 (1.4, 8.2)</td>
<td>0.003</td>
</tr>
<tr>
<td>PDLIM5</td>
<td>TERBUFOS</td>
<td>REF</td>
<td>1.4 (0.9, 2.1)</td>
<td>1.6 (1.0, 2.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>17q24</td>
<td>TERBUFOS</td>
<td>REF</td>
<td>1.7 (1.0, 3.0)</td>
<td>2.1 (1.2, 3.6)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Koutros, Beane Freeman et al., Cancer Research, 2010
Koutros...Beane Freeman PLoS One, 2013
Metolachlor: Chloroacetilinide Herbicide

- Used primarily on corn
- EPA Class C, Possible Human Carcinogen
- Based primarily on liver tumors in rats

Source: USGS Pesticide Use Maps
Metolachlor and Liver Cancer

Relative Risks and 95% CI

Non-exposed Q1 Q2 Q3 Q4

p-trend=0.03

Silver...Beane Freeman, Int J Cancer, 2015
Mixtures Can Be Important

- Important to evaluate individual active ingredients
- Pesticides often applied as mixtures of different products
- May have synergistic effects
Chloroacetilinide Herbicides: Acetochlor

- Registered for use in 1994
- Registration based on reduction in use of other herbicides including atrazine
Acetochlor/Atrazine and Lung Cancer

<table>
<thead>
<tr>
<th></th>
<th>Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor alone</td>
<td>1.96 (0.70-5.50)</td>
</tr>
<tr>
<td>Atrazine alone</td>
<td>1.3 (0.9-1.9)</td>
</tr>
</tbody>
</table>

Lerro... Beane Freeman, *Int J Cancer*, 2015
Acetochlor/atrazine and Lung Cancer

<table>
<thead>
<tr>
<th></th>
<th>Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor alone</td>
<td>1.96 (0.70-5.50)</td>
</tr>
<tr>
<td>Atrazine alone</td>
<td>1.3 (0.9-1.9)</td>
</tr>
<tr>
<td>Atrazine + Acetochlor</td>
<td>2.33 (1.30-4.17)</td>
</tr>
</tbody>
</table>
Cancer in Women

32,345 spouses of farmers enrolled in AHS

60% used pesticides at enrollment

Information on ever/never personal use
Personal Diazinon Use and Cancer Among Spouses

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Exposure</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>Any OP</td>
<td>1.2 (1.0-1.4)</td>
</tr>
<tr>
<td></td>
<td>Diazinon</td>
<td>1.1 (0.3-1.4)</td>
</tr>
<tr>
<td>Ovary</td>
<td>Any OP</td>
<td>1.5 (0.8-2.7)</td>
</tr>
<tr>
<td></td>
<td>Diazinon</td>
<td>1.9 (1.0-3.4)</td>
</tr>
</tbody>
</table>

Controlled for age, state, smoking, alcohol, BMI, education, menopausal status, parity, OC use, and correlated pesticides.
Cancer in Women

32,345 spouses of farmers enrolled in AHS

60% used pesticides at enrollment

All are married to a farmer who applies pesticides

Potential for non-occupational exposures
Non-occupational Pesticide Exposure

- Represent high level of general population exposures

- Important to consider impact of occupational pesticide use on general population in rural areas
 - Proximity to fields/agricultural drift
 - Para-occupational (take-home)
 - Residential use

- Follow up on associations we observed in farmers
Other Agricultural Exposures
Biologically Active Dusts/Endotoxins
Agricultural Exposures and Lung Cancer

- Lung Cancer
 - Standardized incidence ratio = 0.48 (0.44, 0.53)
- Due partially to lower smoking rates
- Endotoxins—linked to ↓ lung cancer rates
 - Components of Gram (-) cell walls
 - Found in agricultural settings, including animals and stored grain/hay

Koutros...Beane Freeman, JOEM 2010
Lenters, Basinas, Beane Freeman et al, Cancer Causes Control 2010
Animal Exposures and Lung Cancer

<table>
<thead>
<tr>
<th>Type of Animals</th>
<th># Exposed Cases</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>130</td>
<td>1.0 (0.8-1.3)</td>
</tr>
<tr>
<td>Dairy</td>
<td>17</td>
<td>1.3 (0.8-2.0)</td>
</tr>
<tr>
<td>Hogs</td>
<td>70</td>
<td>1.0 (0.8-1.3)</td>
</tr>
<tr>
<td>Sheep</td>
<td>5</td>
<td>0.7 (0.3-1.7)</td>
</tr>
<tr>
<td>Poultry</td>
<td>22</td>
<td>0.6 (0.4-0.97)</td>
</tr>
</tbody>
</table>

Number of livestock

<table>
<thead>
<tr>
<th>Number of livestock</th>
<th># Exposed Cases</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>171</td>
<td>1.0</td>
</tr>
<tr>
<td><100</td>
<td>115</td>
<td>1.1 (0.2-1.5)</td>
</tr>
<tr>
<td>100-999</td>
<td>60</td>
<td>0.9 (0.8-1.3)</td>
</tr>
<tr>
<td>1,000+</td>
<td>12</td>
<td>0.5 (0.3-0.97)</td>
</tr>
</tbody>
</table>

p-trend=0.04

Adjusted for age, state, education and smoking
Lung Carcinogens on the Farm

Diesel exhaust

IARC Group 1 lung carcinogen
Dieselized Farm Equipment Use and Lung Cancer in Farmers

Lung Cancer Overall
p-trend=0.18

Adenocarcinoma
p-trend=0.01

Relative Risks and 95% CI

Adjusted for age, state, race, education, smoking, animal exposure

Tual...Beane Freeman, In Press, Environ Hlth Perspectives
Dieselized Equipment and Adenocarcinoma by Endotoxin Exposure

No Endotoxin-related Activities

Endotoxin Activities

Relative Risks and 95% CI

p-trend=0.003

p-trend=0.3

p-interaction=0.05

Adjusted for age, state, race, education, smoking

Tual...Beane Freeman, In Press, Environ Hlth Perspectives
Early Life Exposures
Early Life Exposures: Future Cancer Risk?

- 92% of farmers
- 60% of spouses grew up on a farm
Increased risk of NHL among those who grew up on a farm

Adjusted for sex, state, race, family history, alcohol, smoking, and BMI
Allergies and NHL

- Living on a farm, particularly during childhood prevalence of allergies
- Potential immune effects
 - Th1/Th2 balance
 - Enhanced T_{reg} activity
 - Increased IL-10 production
- In AHS:
 - Decreased risk of NHL with allergies at enrollment
 - HR=0.6 (0.5-0.8)

Hofmann…Beane Freeman, CEBP 2015
What’s next? Mechanistic Insights

Molecular studies evaluating mechanisms of specific pesticide disease associations

- Intermediate effect biomarkers
 - Epigenetics
 - Hormones
 - Inflammation
- Disease precursors
- Somatic mutations in tumor tissue
- Gene-environment interactions
Summary

- Specific pesticides may influence cancer risk for both farmers and those not occupationally exposed:
 - High quality human studies with information on specific chemicals/exposures necessary for public health
- Other exposures on the farm may also be important
- Non-occupational adult and early life exposures
Collaborators

NCI
Michael Alavanja
Gabriella Andreotti
Dalsu Baris
Aaron Blair
Ken Cantor
Joanne Colt
Nicole Deziel
Melissa Friesen
Jonathan Hofmann
Barry Graubard
Rena Jones
Stella Koutros
Cathy Lerro
Sarah Locke
Lydia Louis
Jay Lubin
Debra Silverman
Severine Tual
Mary Ward
Shelia Zahm

NIEHS
Dale Sandler
Honglei Chen
Freya Kamel

NIOSH
Sharon Silver

University of Iowa
Cynthia Hines
Charles Lynch
William Field

North Carolina State University
Jonathon Davis
Peter Thorne

Environmental Protection Agency
Jane Hoppin
Kent Thomas
The Agricultural Health Study works to understand how agricultural, lifestyle, and genetic factors affect the health of farming populations.

www.aghealth.nih.gov
Early Life Pesticide Exposures: Future Cancer Risk?

- Data on 38,000 children of AHS participants
- Early evaluation showed increased risk of
 - Lymphoma
 - Brain tumors

Now linking to parental exposures
Farm exposures, allergies, and risk of NHLs

- Farm childhood
- Allergies
- NHLs
Association between pesticides and prostate cancer among men with risk allele GWAS

Increased risk of prostate cancer with several organophosphate insecticides