Aircraft Upset Recovery Simulation
The Dutch Approach

Willem Bles, SDPT Consult, The Netherlands
Military Aviation

- Upset recovery simulation in the RNLAF is the result of a close cooperation between the Air Force (aeromedical institute) and TNO (research), and later AMST (industry)
- It is an end product of the steady SD training development over the last 50 years, which will be shown in the subsequent slides.
≈1960: RNLAF demonstration of limitations of vestibular system to student pilots
≈1970 more sophisticated device....
≈1985: basic visual-vestibular demonstrations
1998: Significant changes in SD training

- Aeromedical Institute acquired the Airfox DISO
 - Man in the loop
 - Demos of in-flight illusions on the ground
 - Generic aircraft model
 - Generic cockpit
 - Out the Window visuals
2013: replacement of DISO by ASD

- Training and R&D
- >> OtW visuals
- 1-/2-seater
2008: Desdemona 6DoF motion research platform, result of close cooperation between AMST and TNO

• Nested design requires new motion cueing solutions
 – Smooth transitions from e.g. hexapod ↔ centrifuge motion

• Example applications:
 – Spatial Disorientation
 – F-16 simulation
 – Upset Recovery
F-16 simulation

- Requires semi realistic cockpit
- Requires highly sophisticated aircraft model
- Requires specific motion cueing solutions
- Test pilots needed for final tuning of motion cueing and validation
Results

– Comparison of ULT (fixed base), Desdemona and in flight:
 • Judgement of experienced pilots was that in all investigated aspects Desdemona matched the real in flight (inverted) stall recovery.
 • The ULT stall recovery was judged much lower.

– Training of RNLAF F16 pilots.
Commercial Aviation

• Loss of Control in flight causes 33% of all accident fatalities in last 10 years
 – Unsuccessful upset recovery often contributing factor
 – Pilots have hardly any experience in upset recovery
 – Upset recovery training in the air is rather tricky
 – Standard hexapod systems not ideal for this simulation
 – European project SUPRA (2009-2012) addressed this issue:
 the consortium consisted of:
 (NL) TNO NLR DESDEMONA
 (RU) TsAGI GFRI CSTS “Dinamika”
 (UK) DeMontfort University
 (AT) AMST
 (DE) Max Planck Institute
 (ES) BR&TE
Flight simulation

Mathematical aircraft model

Image Gen.

Control loading

Motion cueing
Flight simulation

Mathematical aircraft model

Image Gen.

Control loading

Motion cueing

Problematic for Upset Recovery
Limitation of flight simulator

- Aerodynamic model
 - Applies to normal flight envelope
 - Not valid outside this envelope
 - Unrepresentative upset behavior

- Motion cueing
 - Adequate for normal flight operations
 - Only onset motion cues
 - No sustained rates / G-loads
Advanced aerodynamic modeling

- Unique combination of engineering methods
- Non-linear aerodynamics at high angle-of-attack
- Unsteady effects, lateral-directional instability

Wind tunnel data

CFD Predictions

\[C_{dyn} = \frac{\tau_s}{\tau_s + 1} \Delta C(\alpha) \]

Flight test data

Phenomenological
Desdemona motion cueing
SUPRA Evaluation

- Piloted evaluations

- Phase 1
 - Expert test pilots
 - Model qualification

- Phase 2
 - Line pilots
 - No previous upset exposure
 - Objective metrics

Capt. Vladimir Biryukov

Capt. Dave Carbaugh
Results from SUPRA

• SUPRA successfully extended the aerodynamic flight envelope
• Optimized filter superior to current hexapod designs
• G-cueing is the preferred solution, when available
Conclusions

• Ground based flight training is with the right simulation methods a validated, reliable, safe and cost-effective approach, for military as well as for civil aviation.

• An analysis of the maneuvers to be simulated should indicate the type of simulator to be used